direct product, metabelian, supersoluble, monomial, A-group, rational
Aliases: C22×S32, C32⋊C24, C62⋊5C22, C3⋊S3⋊C23, (C2×C6)⋊8D6, (C3×C6)⋊C23, (C3×S3)⋊C23, C3⋊1(S3×C23), C6⋊1(C22×S3), (S3×C6)⋊10C22, (S3×C2×C6)⋊7C2, (C22×C3⋊S3)⋊6C2, (C2×C3⋊S3)⋊8C22, SmallGroup(144,192)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C22×S32 |
Generators and relations for C22×S32
G = < a,b,c,d,e,f | a2=b2=c3=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 912 in 284 conjugacy classes, 104 normal (6 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, S3, C6, C6, C23, C32, D6, D6, C2×C6, C2×C6, C24, C3×S3, C3⋊S3, C3×C6, C22×S3, C22×S3, C22×C6, S32, S3×C6, C2×C3⋊S3, C62, S3×C23, C2×S32, S3×C2×C6, C22×C3⋊S3, C22×S32
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, S32, S3×C23, C2×S32, C22×S32
(1 8)(2 9)(3 7)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 5)(2 6)(3 4)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 22)(2 24)(3 23)(4 20)(5 19)(6 21)(7 17)(8 16)(9 18)(10 14)(11 13)(12 15)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 22)(2 23)(3 24)(4 21)(5 19)(6 20)(7 18)(8 16)(9 17)(10 15)(11 13)(12 14)
G:=sub<Sym(24)| (1,8)(2,9)(3,7)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,5)(2,6)(3,4)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,22)(2,24)(3,23)(4,20)(5,19)(6,21)(7,17)(8,16)(9,18)(10,14)(11,13)(12,15), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,22)(2,23)(3,24)(4,21)(5,19)(6,20)(7,18)(8,16)(9,17)(10,15)(11,13)(12,14)>;
G:=Group( (1,8)(2,9)(3,7)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,5)(2,6)(3,4)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,22)(2,24)(3,23)(4,20)(5,19)(6,21)(7,17)(8,16)(9,18)(10,14)(11,13)(12,15), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,22)(2,23)(3,24)(4,21)(5,19)(6,20)(7,18)(8,16)(9,17)(10,15)(11,13)(12,14) );
G=PermutationGroup([[(1,8),(2,9),(3,7),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,5),(2,6),(3,4),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,22),(2,24),(3,23),(4,20),(5,19),(6,21),(7,17),(8,16),(9,18),(10,14),(11,13),(12,15)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,22),(2,23),(3,24),(4,21),(5,19),(6,20),(7,18),(8,16),(9,17),(10,15),(11,13),(12,14)]])
G:=TransitiveGroup(24,232);
C22×S32 is a maximal subgroup of
C62.91C23 D6⋊4D12 D6⋊5D12 C62.125C23 D6≀C2
C22×S32 is a maximal quotient of
D12.33D6 D12.34D6 D12⋊23D6 D12⋊24D6 D12⋊27D6 Dic6.24D6 Dic6⋊12D6 D12⋊12D6 D12⋊13D6 D12.25D6 Dic6.26D6 D12⋊15D6 D12⋊16D6 C32⋊2+ 1+4
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | 2M | 2N | 2O | 3A | 3B | 3C | 6A | ··· | 6F | 6G | 6H | 6I | 6J | ··· | 6Q |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 |
size | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 6 | ··· | 6 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | D6 | D6 | S32 | C2×S32 |
kernel | C22×S32 | C2×S32 | S3×C2×C6 | C22×C3⋊S3 | C22×S3 | D6 | C2×C6 | C22 | C2 |
# reps | 1 | 12 | 2 | 1 | 2 | 12 | 2 | 1 | 3 |
Matrix representation of C22×S32 ►in GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
-1 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C22×S32 in GAP, Magma, Sage, TeX
C_2^2\times S_3^2
% in TeX
G:=Group("C2^2xS3^2");
// GroupNames label
G:=SmallGroup(144,192);
// by ID
G=gap.SmallGroup(144,192);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,490,3461]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations